Abstract

We consider the Reconfigurable Transfer Line Balancing Problem. This problem consists of allocating a set of operations (necessary to machine a single part) to different workstations placed into a serial line. Each workstation can contain multiple machines operating in parallel. The machines considered are mono-spindle head CNC machines which may imply sequence-dependent setup times between operations in order to perform tool changes. Therefore, the operations allocated to a workstation should be sequenced. Besides, accessibility, inclusion, exclusion and precedence constraints between operations are considered. In this article, we propose a polynomial exact algorithm that balances the transfer line provided the overall sequence of the operations (called ‘giant sequence’) is given. We use this algorithm to solve the balancing problem when the overall sequence of operations is not fixed by embedding it in a metaheuristic framework. We perform experimentation on literature instances. The results obtained show the effectiveness of the proposed approach compared to literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.