Abstract

Spirometry is often included in workplace-based respiratory surveillance programmes but its performance in the identification of restrictive lung disease is poor, especially when the prevalence of this condition is low in the tested population. To improve the specificity (Sp) and positive predictive value (PPV) of current spirometry-based algorithms in the diagnosis of restrictive pulmonary impairment in the workplace and to reduce the proportion of false positives findings and, as a result, unnecessary referrals for lung volume measurements. We re-analysed two studies of hospital patients, respectively used to derive and validate a recommended spirometry-based algorithm [forced vital capacity (FVC) < 85% predicted and forced expiratory volume in 1 s (FEV1)/FVC > 55%] for the recognition of restrictive pulmonary impairment. We used true lung restrictive cases as a reference standard in 2×2 contingency tables to estimate sensitivity (Sn), Sp and PPV and negative predictive values for each diagnostic cut-off. We simulated a working population aged <65 years and with a disease prevalence ranging 1-10% and compared our best algorithm with those previously reported using receiver operating characteristic curves. There were 376 patients available from the two studies for inclusion. Our best algorithm (FVC < 70% predicted and FEV1/FVC ≥ 70%) achieved the highest Sp (96%) and PPV (67 and 15% for a disease prevalence of 10 and 1%, respectively) with the lowest proportion of false positives (4%); its high Sn (71%) predicted the highest proportion of correctly classified restrictive cases (91%). Our new spirometry-based algorithm may be adopted to accurately exclude pulmonary restriction and to possibly reduce unnecessary lung volume testing in an occupational health setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call