Abstract

A modified interacting multiple model (IMM) method called spherical simplex unscented Kalman filter-based jumping and static IMM (SSUKF-JSIMM) is proposed to solve the problem of nonlinear filtering with unknown continuous system parameter. SSUKF-JSIMM regards the continuous system parameter space as a union of disjoint regions, and each region is assigned to a model. For each model, under the assumption that the parameter belongs to the corresponding region, one sub-filter is used to estimate the parameter and the state when the parameter is presumed to be jumping, and another sub-filter is used to estimate the parameter and the state when the parameter is presumed to be static. Considering that spherical simplex unscented Kalman filter (SSUKF) is more suitable for a real-time system than the unscented Kalman filter (UKF), SSUKFs are adopted as the sub-filters of SSUKF-JSIMM. Results of the two SSUKFs are fused as the estimation output of the model. Experimental results show that SSUKF-JSIMM achieves higher performance than IMM, SIR, and UKF in bearings-only tracking problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.