Abstract

In this paper, a new joint spectral–spatial subpixel mapping model is proposed for hyperspectral remotely sensed imagery. Conventional approaches generally use an intermediate step based on the derivation of fractional abundance maps obtained after a spectral unmixing process, and thus the rich spectral information contained in the original hyperspectral data set may not be utilized fully. In this paper, a concept of subpixel abundance map, which calculates the abundance fraction of each subpixel to belong to a given class, was introduced. This allows us to directly connect the original (coarser) hyperspectral image with the final subpixel result. Furthermore, the proposed approach incorporates the spectral information contained in the original hyperspectral imagery and the concept of spatial dependence to generate a final subpixel mapping result. The proposed approach has been experimentally evaluated using both synthetic and real hyperspectral images, and the obtained results demonstrate that the method achieves better results when compared to other seven subpixel mapping methods. The numerical comparisons are based on different indexes such as the overall accuracy and the CPU time. Moreover, the obtained results are statistically significant at 95% confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.