Abstract
The spectral conjugate gradient methods, with simple construction and nice numerical performance, are a kind of effective methods for solving large-scale unconstrained optimization problems. In this paper, based on quasi-Newton direction and quasi-Newton condition, and motivated by the idea of spectral conjugate gradient method as well as Dai-Kou's selecting technique for conjugate parameter [SIAM J. Optim. 23 (2013), pp. 296–320], a new approach for generating spectral parameters is presented, where a new double-truncating technique, which can ensure both the sufficient descent property of the search directions and the bounded property of the sequence of spectral parameters, is introduced. Then a new associated spectral conjugate gradient method for large-scale unconstrained optimization is proposed. Under either the strong Wolfe line search or the generalized Wolfe line search, the proposed method is always globally convergent. Finally, a large number of comparison numerical experiments on large-scale instances from one thousand to two million variables are reported. The numerical results show that the proposed method is more promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.