Abstract

A general method exists for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at one-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace type operator acting on h is known to be self-adjoint but not strongly elliptic. The present paper shows that, on the Euclidean four-ball, only the scalar part of perturbative modes for quantum gravity is affected by the lack of strong ellipticity. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is confined to the remaining fourth sector. The integral representation of the resulting zeta-function asymptotics on the Euclidean four-ball is also obtained; this remains regular at the origin by virtue of a peculiar spectral identity obtained by the authors. There is therefore encouraging evidence in favour of the zeta(0) value with fully diff-invariant boundary conditions remaining well defined, at least on the four-ball, although severe technical obstructions remain in general.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.