Abstract

The aim of this paper is to propose a new solution concept for the roommate problem with strict preferences. We introduce maximum irreversible matchings and consider almost stable matchings (Abraham et al., 2006) and maximum stable matchings (Tan 1990, 1991b). These solution concepts are all core consistent. We find that almost stable matchings are incompatible with the other two concepts. Hence, to solve the roommate problem we propose matchings that lie at the intersection of the maximum irreversible matchings and maximum stable matchings, which we call Q-stable matchings. We construct an efficient algorithm for computing one element of this set for any roommate problem. We also show that the outcome of our algorithm always belongs to an absorbing set (Inarra et al., 2013).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.