Abstract

In this study, a new solar and geothermal based integrated system is developed for multigeneration of electricity, fresh water, hydrogen and cooling. The system also entails a solar integrated ammonia fuel cell subsystem. Furthermore, a reverse osmosis desalination system is used for fresh water production and a proton exchange membrane based hydrogen production system is employed. Moreover, an absorption cooling system is utilized for district cooling via available system waste heat. The system designed is assessed thermodynamically through approaches of energy and exergy analyses. The overall energy efficiency is determined to be 42.3%. Also, the overall exergy efficiency is assessed, and it is found to be 21.3%. The exergy destruction rates in system components are also analysed and the absorption cooling system generator as well as geothermal flash chamber are found to have comparatively higher exergy destruction rates of 2370.2 kW and 643.3 kW, respectively. In addition, the effects of varying system parameters on the system performance are studied through a parametric analyses of the overall system and associated subsystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call