Abstract
In this paper, we develop a novel soft-clipping discrete beta GARCH (ScDBGARCH) model that provides an available method to model bounded time series with under-dispersion, equi-dispersion or over-dispersion. The new model not only allows positive dependence, but also negative dependence. The stochastic properties of the models are established, and these results are, in turn, used in the analysis of the asymptotic properties of the conditional maximum likelihood (CML) estimator of the new model. In addition, we apply the new model to measles infection to show its improved performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.