Abstract

A new anode composition comprising SiO and graphite(C) is prepared through a high-energy ball milling process. During the first cycle, the anode delivers high discharge and charge capacity values of 1556 and 693 mAh g −1, respectively. The electrode shows a reversible charge capacity value of 688 mAh g −1 at the 30th cycle with 99% Coulombic efficiency. X-ray diffraction analysis reveals that ball milling does not produce any new compound, but only causes a reduction in particle size. The irreversible and reversible capacities appear to be interdependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.