Abstract
Steady-state mixed hydrodynamic lubrication of rigid journal bearing is investigated by using a finite difference form of the Patir–Cheng average Reynolds equation under the Reynolds boundary condition. Two sets of discretization meshes, i.e., the rectangular and nonorthogonal herringbone meshes, are considered. A virtual-mesh approach is suggested to resolve the problem due to the singularities of pressure derivatives at the turning point of the herringbone mesh. The effectiveness of the new approach is examined by comparing the predicted load with that found in the literature for a smooth-surface case solved in the conventional rectangular mesh. The effects of the skewness angles of symmetric and asymmetric herringbone meshes on the predicted parameters, such as load, friction coefficient, attitude angle, and maximum pressure, are investigated for smooth, rough, and herringbone-grooved bearing surfaces. It is found that the new approach helps to improve the computational accuracy significantly, as demonstrated by comparing the results with and without the treatment of the pressure derivative discontinuity although the latter costs slightly less computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.