Abstract

In this paper, a new single-cell hybrid switched inductor DC-DC converter is proposed to demonstrate the verification of ultra-high voltage gain in renewable energy applications (REA). The modification involves adding a single cell of an inductor with a diode and double capacitor to increase voltage transfer gain. Additionally, this modification helps prevent the input current from becoming zero, pulsating at very low duty cycles. The single cell of the hybrid inductor is interleaved with the main switch to reduce current stress when the capacitor of the single-cell inductor charge becomes zero. Moreover, the addition of a modified hybrid switch inductor with a capacitor, operating in dual boosting mode with a single switch, allows the converter to achieve ultra-high voltage gain. The proposed converter offers several advantages, including ultra-high voltage gain, high efficiency, low voltage stress on power MOSFETs, diodes, inductors, and capacitors, as well as low switching and conduction losses. Furthermore, the proposed converter utilizes transformerless and non-coupled inductors. Mathematical equations have been derived for the discontinuous conduction mode (DCM) and continuous conduction mode (CCM) and implemented using Matlab Simulink software to validate the results. In addition, a dual PI controller is designed for the proposed converter to verify the fixed output voltage. Experimental results have also been obtained for a 200 W prototype, with the input voltage varying between 20 V and 40 V, and an output voltage of 200 V at an efficiency of 96.5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call