Abstract

AbstractA state‐of‐the‐art single grating spectrograph for Raman scattering studies within the deep ultraviolet (DUV) region of the electromagnetic spectrum is discussed. It is based on a high throughput DUV version of a single‐stage monochromator originally designed for use in the visible spectral region. Its key components are two identical, newly designed calcium fluoride camera lenses each consisting of five different individual optical elements. The first of these lenses collimates the Raman scattered DUV radiation entering the spectrometer through its entrance slit. The second lens focuses the collimated beam of dispersed Raman scattered DUV radiation emerging from a high‐resolution reflection grating onto a charge coupled device (CCD) detector with enhanced DUV sensitivity. A novel high transmission edge filter is used as a blocking device for a sufficient rejection of the Rayleigh line generating a relatively sharp transmittance cutoff at a Stokes Raman wavenumber shift of about ∼450 cm−1 employing 257 nm DUV excitation. Overall, this new spectrograph enables rapid collection of Stokes DUV Raman scattered photons at f/2 wide apertures with sufficiently large signal‐to‐noise ratios (SNRs) in relatively short acquisition times and with an effective spectral resolution of approximately ∼6 cm−1. Backscattered Raman spectra of the following chemicals are presented as typical results illustrating the excellent performance characteristics of this new DUV spectrograph for a variety of experimental conditions within different scattering scenarios and for a relatively wide range of commonly used sample preparation techniques: neat cyclohexane, laboratory air, polycrystalline D‐glucose, single crystal L‐alanine and a dilute aqueous solution of 2′‐deoxyadenosine. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call