Abstract

We introduce a new simulation method, which we call the contact-distribution method, for the determination of the Helmholtz potential for polymer/colloid systems from lattice Monte-Carlo simulations. This method allows one to obtain forces between finite or semi-infinite objects of any arbitrary shape and dimensions in the presence of polymer chains in solution or physisorbed or chemisorbed at interfaces. We illustrate the application of the method using two examples: (i) the interaction between the tip of an atomic force microscope (AFM) and a single, end-grafted polymer chain and (ii) the interaction between an AFM tip and a polymer brush. Numerical results for the first two cases illustrate how the method can be used to confirm and extend scaling laws for forces and Helmholtz potentials, to examine the effects of the shapes and sizes of the objects and to examine conformational transitions in the polymer chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.