Abstract

Tolerance of microorganisms to diverse stresses (i.e., multistress tolerance) is a very useful property with industrial applications. We have developed a simple method for isolating multistress-tolerant semidominant mutants of the budding yeast Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide (H(2)O(2)) stress condition, which we named the lethal concentration of H(2)O(2) (LCH) method. This method involves simply isolating colonies after plating of mutagenized S. cerevisiae cells, which are cultivated overnight in liquid media, on agar plates containing a lethal concentration of H(2)O(2) for the wild-type strain. Phenotypic and genetic analyses of the ten strains isolated by this method revealed that two strains exhibiting stress tolerance to H(2)O(2), ethanol, heat shock, salt, organic solvent, freeze-thaw, chronological aging, and high concentrations of glucose possess semidominant and distinct single-gene mutations designated as MLT1-1 (multistress tolerance) and MLT2-1, which are responsible for multistress tolerance. From these results, we expect this method to confer multistress tolerance on industrial yeasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.