Abstract

AbstractThe assays commonly used to determine ATP content in biological samples generally measure total cellular ATP content, but not the different subcellular pools. In this study a new simple method for measuring ATP content in a cytosol-enriched fraction (CEF) was developed, based on a rapid cytosolic ATP extraction (by an isotonic grinding medium that preserves organelle integrity) and its detection monitoring the NADPH fluorescence generated via hexokinase/glucose-6-phosphate dehydrogenase coupled reactions. Four protocols, differing for timing of NADPH generation and for either the presence or absence of some inhibitors of ATP and NADPH metabolism, were compared by determining CEF-ATP, as well as total ATP, in durum wheat (Triticum durum Desf.) etiolated seedlings. The best protocol was the one adopting both simultaneous NADPH generation and use of inhibitors during tissue homogenization. This protocol also showed higher performance than the classical trichloroacetic acid extraction. Using the new method, CEF-ATP content was assessed in control, salt- and osmotic-stressed seedlings, resulting 2.68 ± 0.04, 1.69 ± 0.12 (−40%) and 1.35 ± 0.16 (−50%) μmol/g dry weight, respectively. Finally, the effects of this stress-dependent decrease of cytosolic ATP were evaluated with respect to a possible modulation of two mitochondrial energy-dissipating systems, the uncoupling protein (PUCP) and the K+ channel (PmitoKATP), both inhibited by cytosolic ATP. Experiments carried out at different physiological ATP concentrations suggest that the decreased cytosolic ATP content occurring under hyperosmotic stress may contribute to attenuate inhibition of PmitoKATP, thus promoting its activity (up to about 90%), but not of PUCP, that appears to lose ATP sensitivity under stress condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.