Abstract
The paper proposes a new shrinking gradient-like projection method for solving equilibrium problems. The algorithm combines the generalized gradient-like projection method with the monotone hybrid method. Only one optimization program is solved onto the feasible set at each iteration in our algorithm without any extra-step dealing with the feasible set. The absence of an optimization problem in the algorithm is explained by constructing slightly different cutting-halfspace in the monotone hybrid method. Theorem of strong convergence is established under standard assumptions imposed on equilibrium bifunctions. An application of the proposed algorithm to multivalued variational inequality problems (MVIP) is presented. Finally, another algorithm is introduced for MVIPs in which we only use a value of main operator at the current approximation to construct the next approximation. Some preliminary numerical experiments are implemented to illustrate the convergence and computational performance of our algorithms over others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.