Abstract

This paper presents a model for power load forecasting using support vector machine and chaotic time series. The new model can make more accurate prediction. In the past few years, along with power system privatization and deregulation, accurate forecast of electricity load has received increasing attention. According to the chaotic and non-linear characters of power load data, the model of support vector machines (SVM) based on chaotic time series has been established. The time series matrix has also been established according to the theory of phase-space reconstruction. The Lyapunov exponents, one important component of chaotic time series, are used to determine time delay and embedding dimension, the decisive parameters for SVM. Then support vector machines algorithm is used to predict power load. In order to prove the rationality of chosen dimension, another two random dimensions are selected to compare with the calculated dimension. And to prove the effectiveness of the model, BP algorithm is used to compare with the results of SVM. Findings show that the model is effective and highly accurate in the forecasting of short-term power load. It means that the model combined with SVM and chaotic time series learning system have more advantage than other models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.