Abstract

AbstractHere, a new cubic B‐spline plate element is developed using field consistency principle, for vibration analysis. The formulation includes anisotropy, transverse shear deformation, in‐plane and rotary inertia effects. The element is based on a laminated refined plate theory, which satisfies the interface transverse shear stress and displacement continuity, and has a vanishing shear stress on the top and bottom surfaces of the plates. The lack of consistency in the shear strain field interpolations in its constrained physical limits produces poor convergence and results in unacceptable solutions due to locking phenomenon. Hence, numerical experimentation for the evaluation of natural frequencies of plates is carried out to check this deficiency with a series of assumed shear strain functions, redistributed in a field consistent manner. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call