Abstract

In this paper, we consider a Hopfield like Chaotic Neural Networks which have both self-coupling and non-invertible activation functions. We show that the interactions between neurons can be used as a means of chaos generation or suppression to neuron’s outputs when more adaptability or stability is required. Furthermore, a new set of sufficient conditions based on coupling weights is proposed so that the synchronization of all neuron’s outputs with each other is guaranteed, when all neuron’s have identical activation functions. Finally, the effectiveness of the proposed approach is evaluated by performing simulations on three illustrative examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.