Abstract

A new series of composite materials (PLMTPA) based on tungstophosphoric acid (TPA) included in a polymeric matrix of polyacrylamide (PLM), with a TPA:PLM ratio of 20/80, 40/60, and 60/40, were synthesized and well characterized by FT-IR, XRD, 31P MAS-NMR, TGA-DSC, and SEM-EDAX. Their acidic and textural properties were determined by potentiometric titration and nitrogen adsorption–desorption isotherms, respectively. Considering 31P MAS-NMR and FT-IR analyses, the main species present in the samples is the [PW12O40]3− anion that, according to XRD results, is highly dispersed in the polymeric matrix or appears as a noncrystalline phase. The thermogravimetric analysis revealed that PLMTPA materials did not undergo any remarkable chemical changes up to 200 °C. Additionally, the PLMTPA materials showed strong acid sites whose number increased with the increment of their TPA content. Finally, PLMTPA materials were used as efficient and recyclable noncorrosive catalysts for the synthesis of 2-benzazepines and related compounds. Good yields (55–88%) and high purity were achieved by a Pictet-Spengler variant reaction between N-aralkylsulfonamides and s-trioxane in soft reaction conditions: low toluene volume, at 70 °C, for 3 h. The described protocol results in a useful and environmentally friendly alternative with operative simplicity. The best catalyst in the optimized reaction conditions, PLMTPA60/40100, was reused six times without appreciable loss of activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.