Abstract

SMTPs are a family of small-molecule plasminogen modulators that enhance plasminogen activation. SMTP-7, one of the most potent congeners, is effective in treating thrombotic cerebral infarction. The SMTP molecule consists of a tricyclic γ-lactam moiety, a geranylmethyl group, and an N-linked side chain. The presence of both an aromatic group and a negatively ionizable group in the N-linked side chain is crucial for activity. Investigations of the congeners with a phenylglycine-based side chain suggest that a phenolic hydroxy group affects potency. In this study, we isolate and characterize a series of novel SMTP congeners with a phenylamine-based N-linked side chain. Of the 11 congeners isolated, SMTP-19 (with a 4-phenylcarboxylic acid moiety), SMTP-22 (with a 3-hydroxyphenyl-4-carboxylic acid moiety) and SMTP-25 (with a 2-hydroxyphenyl-3-carboxylic acid moiety) are as potent as SMTP-7 in plasminogen-modulating activity. Their isomers with a carboxylic acid group and/or a phenolic hydroxy group at different positions have <40% of the activity of these congeners. Both SMTP-22 and SMTP-25 have >1.7 times more oxygen radical absorbance capacity as compared with SMTP-7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.