Abstract

Investigation of chlorins in the oxic surface sediment of a small eutrophic alpine lake (Motte lake) revealed the presence of a new series of steryl chlorin esters containing the pheophorbide a nucleus, together with their pyropheophorbide a steryl ester counterparts previously observed in the anoxic surface sediment of the same lake. Identification of the pheophorbide a steryl esters was based on comparison of spectroscopic, chromatographic and mass spectrometric characteristics of the compounds with those of a synthetic standard and of pyropheophorbide a steryl esters. Combined liquid chromatography-mass spectrometry analysis confirmed the absence of pheophorbide a steryl esters in the anoxic sediment but allowed their detection in traces in the water column, indicating that pheophorbide a steryl esters are, like their pyropheophorbide a analogs, formed in the water column. The distribution of sterols released by hydrolysis of the pheophorbide a steryl esters shows close similarities to that of the free sterols in the water column and of the sterols of the pyropheophorbide a steryl esters. It appears that, like their pyropheophorbide a counterparts, pheophorbide a steryl esters incorporate mainly sterols of phytoplanktonic origin. Their formation probably involves the same mechanism as for pyropheophorbide a steryl ester formation, i.e. metabolism by zooplankton grazing on phytoplankton. The presence of pheophorbide a steryl esters in the oxic sediment and their absence from the anoxic sediment is probably due to a lower stability of compounds containing a carbomethoxy substituent in the anoxic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.