Abstract

We report the synthesis, crystal structures, IR, and thermal, dielectric, and magnetic properties of a new series of ammonium metal formate frameworks of [HONH(3)][M(II)(HCOO)(3)] for M = Mn, Co, Ni, Zn, and Mg. They are isostructural and crystallize in the nonpolar chiral orthorhombic space group P2(1)2(1)2(1), a = 7.8121(2)-7.6225(2) Å, b = 7.9612(3)-7.7385(2) Å, c = 13.1728(7)-12.7280(4) Å, and V = 819.27(6)-754.95(4) Å(3). The structures possess anionic metal formate frameworks of 4(9)·6(6) topology, in which the octahedral metal centers are connected by the anti-anti formate ligands and the hydroxylammonium is located orderly in the channels, forming strong O/N-H···O(formate) hydrogen bonds with the framework. HONH(3)(+) with only two non-H atoms favors the formation of the dense chiral 4(9)·6(6) frameworks, instead of the less dense 4(12)·6(3) perovskite frameworks for other monoammoniums of two to four non-H atoms because of its small size and its ability to form strong hydrogen bonding. However, the larger size of HONH(3)(+) compared to NH(4)(+) resulted in simple dielectric properties and no phase transitions. The three magnetic members (Mn, Co, and Ni) display antiferromagnetic long-range ordering of spin canting, at Néel temperatures of 8.8 K (Mn), 10.9 K (Co), and 30.5 K (Ni), respectively, and small spontaneous magnetizations for the Mn and Ni members but large magnetization for the Co member. Thermal and IR spectroscopic properties are also reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call