Abstract

Antibiotic residues in animal-derived food (egg) are threatening human health. Semiconductor heterojunction surface-enhanced Raman scattering (SERS) substrates can be used for ultra-sensitive detection of antibiotic residues in egg. Here, a TiO2/ZnO heterojunction was developed as a new SERS substrate based on an interface engineering strategy. Due to strong interfacial coupling and efficient carrier separating in heterostructure, utilization rate of photo-induced electrons in substrate was improved greatly, which realized the efficient charge transfer in substrate-molecule system, resulting in a prominent SERS enhancement. Taking the detection of enrofloxacin residue in egg as an example, the limit of detection (LOD) is only 13.1 μg/kg, which is far below the European Union standard, and lower than LODs of other conventional analytical methods and existing noble metal-based SERS methods. More importantly, benefiting from high sensitivity and selectivity of heterojunction and fingerprint characteristics of SERS, multiple antibiotic residues in egg can be identified simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call