Abstract
This paper proposed a new semi-supervised algorithm combined with Mutual-cross Imperial Competition Algorithm (MCICA) optimizing Support Vector Machine (SVM) for motion imagination EEG classification, which not only reduces the tedious and time-consuming training process and enhances the adaptability of Brain Computer Interface (BCI), but also utilizes the MCICA to optimize the parameters of SVM in the semi-supervised process. This algorithm combines mutual information and cross validation to construct objective function in the semi-supervised training process, and uses the constructed objective function to establish the semi-supervised model of MCICA for optimizing the parameters of SVM, and finally applies the selected optimal parameters to the data set Iva of 2005 BCI competition to verify its effectiveness. The results showed that the proposed algorithm is effective in optimizing parameters and has good robustness and generalization in solving small sample classification problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.