Abstract

This paper is concerned with the design and the analysis of a semi-active suspension controller. In the recent years different kinds of semi-active control strategies, like two-state Skyhook, LQ-clipped or model-predictive control, have already been developed in the literature. In this paper, a new semi-active suspension control strategy that a priori satisfies the principal limitations of a semi-active suspension actuator (dissipative constraint and force bounds) is introduced using the tools of the linear parameter varying (LPV) theory. This new approach exhibits some interesting advantages (implementation, performance flexibility, robustness, etc.) compared to already existing methods. Both industrial criterion based evaluation and simulations on a nonlinear quarter vehicle model are performed to show the efficiency of the method and to validate the theoretical approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.