Abstract

We establish a new second-order iteration method for solving nonlinear equations. The efficiency index of the method is 1.4142 which is the same as the Newton-Raphson method. By using some examples, the efficiency of the method is also discussed. It is worth to note that (i) our method is performing very well in comparison to the fixed point method and the method discussed in Babolian and Biazar (2002) and (ii) our method is so simple to apply in comparison to the method discussed in Babolian and Biazar (2002) and involves only first-order derivative but showing second-order convergence and this is not the case in Babolian and Biazar (2002), where the method requires the computations of higher-order derivatives of the nonlinear operator involved in the functional equation.

Highlights

  • A New Second-Order Iteration Method for Solving Nonlinear EquationsThe efficiency index of the method is 1.4142 which is the same as the Newton-Raphson method

  • Our problem, to recall, is solving equations in one variable

  • It is worth to note that (i) our method is performing very well in comparison to the fixed point method and the method discussed in Babolian and Biazar (2002) and (ii) our method is so simple to apply in comparison to the method discussed in Babolian and Biazar (2002) and involves only first-order derivative but showing second-order convergence and this is not the case in Babolian and Biazar (2002), where the method requires the computations of higher-order derivatives of the nonlinear operator involved in the functional equation

Read more

Summary

A New Second-Order Iteration Method for Solving Nonlinear Equations

The efficiency index of the method is 1.4142 which is the same as the Newton-Raphson method. It is worth to note that (i) our method is performing very well in comparison to the fixed point method and the method discussed in Babolian and Biazar (2002) and (ii) our method is so simple to apply in comparison to the method discussed in Babolian and Biazar (2002) and involves only first-order derivative but showing second-order convergence and this is not the case in Babolian and Biazar (2002), where the method requires the computations of higher-order derivatives of the nonlinear operator involved in the functional equation

Introduction
New Iteration Method
Convergence Analysis
Applications
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call