Abstract
This study presents a new search direction for the horizontal linear complementarity problem. A vector-valued function is applied to the system of xy=μe, which defines the central path. Usually, the way to get the equivalent form of the central path is using the square root function. However, in our study, we substitute a new search function formed by a different identity map, which obtains the equivalent shape of the central path using the square root function. We get the new search directions from Newton’s Method. Given this framework, we prove polynomial complexity for the Newton directions. We show that the algorithm’s complexity is O(nlognϵ), which is the same as the best-given algorithms for the horizontal linear complementarity problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.