Abstract

ObjectivesThis study aimed to assess the screening performance of the quantitative light-induced fluorescence (QLF) technology to detect proximal caries using both fluorescence loss and red fluorescence in a clinical situation. Moreover, a new simplified QLF score for the proximal caries (QS-Proximal) is proposed and its validity for detecting proximal caries was evaluated as well. MethodsThis clinical study included 280 proximal surfaces, which were assessed by visual-tactile and radiographic examinations and scored by each scoring system according to lesion severity. The occlusal QLF images were analysed in two different ways: (1) a quantitative analysis producing fluorescence loss (ΔF) and red fluorescence (ΔR) parameters; and (2) a new QLF scoring index. For both quantitative parameters and QS-Proximal, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were calculated as a function of the radiographic scoring index at the enamel and dentine caries levels. ResultsBoth ΔF and ΔR showed excellent AUROC values at the dentine caries level (ΔF=0.860, ΔR=0.902) whereas a relatively lower value was observed at the enamel caries level (ΔF=0.655, ΔR=0.686). The QS-Proximal also showed excellent AUROC ranged from 0.826 to 0.864 for detecting proximal caries at the dentine level. ConclusionThe QS-Proximal, which represents fluorescence changes, showed excellent performance in detecting proximal caries using the radiographic score as the gold standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.