Abstract


 
 
 The development of robust monitoring systems for assuring the consistency and stability of multistage manufacturing processes necessitates the use of add-on sensors and advanced data collection, storage, and analysis platforms to deal with the high-dimensional data collected from machines and products in multiple stages. In many cases, such an approach may not be feasible due to high implementation costs and the challenges of obtaining the process parameters and analyzing them effectively. This paper proposes an alternative approach for health monitoring and diagnosis of multistage manufacturing processes based on product quality measurements in a sensor-less environment. In the presented work, the available data consists of product quality parameters measured from multiple product types along with the manufacturing route associated with each product. A Gamma distribution is fit to the data for each parameter within a moving time window. Using the distribution fits, a metric is developed to represent the performance of each machine in a stage compared to its peers producing the same product. This metric is then aggregated across all the products produced by the machine to generate the final metric reflecting the overall performance of the machine. This performance metric is first calculated for the machines in the last stage. After flagging the underperforming machines in the last stage, the samples from those machines are removed from the data set and the remaining samples are used to calculate the similar metric for the prior stage. The suggested approach assumes the random distribution of products from one stage to the next to facilitate the implementation of a comparison-based approach. This approach is tested on a data set collected from a manufacturing plant. The results demonstrate the effectiveness of such approach for monitoring and diagnosis of multistage manufacturing processes when the data is not available from within the process.
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.