Abstract

The fact that the spatial nonlocality of galaxy formation is controlled by some short length scale like the Lagrangian radius is the cornerstone of the bias expansion for large-scale-structure tracers. However, the first sources of ionizing radiation between z≈ 15 and z≈ 6 are expected to have significant effects on the formation of galaxies we observe at lower redshift, at least on low-mass galaxies. These radiative-transfer effects introduce a new scale in the clustering of galaxies, i.e. the finite distance which ionizing radiation travels until it reaches a given galaxy. This mean free path can be very large, of order 100 h−1 Mpc. Consequently, higher-derivative terms in the bias expansion could turn out to be non-negligible even on these scales: treating them perturbatively would lead to a massive loss in predictivity and, for example, could spoil the determination of the BAO feature or constraints on the neutrino mass. Here, we investigate under what assumptions an explicit non-perturbative model of radiative-transfer effects can maintain the robustness of large-scale galaxy clustering as a cosmological probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call