Abstract

The jellyfish topology where switches are connected using a random graph has recently been proposed for large scale data-center networks. It has been shown to offer higher bisection bandwidth and better permutation throughput than the corresponding fat-tree topology with a similar cost. In this work, we propose a new routing scheme for jellyfish that out-performs existing schemes by more effectively exploiting the path diversity, and comprehensively compare the performance of jellyfish and fat-tree topologies with HPC workloads. The results indicate that both jellyfish and fat-tree topologies offer comparable high performance for HPC workloads on systems that can be realized by 3-level fat-trees using the current technology and the corresponding jellyfish topologies with similar costs. Fat-trees are more effective for smaller systems while jellyfish is more scalable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.