Abstract
Recent advances in gravitational-wave astronomy make the direct detection of gravitational waves from the merger of two stellar-mass compact objects a realistic prospect. Evolutionary scenarios towards mergers of double compact objects generally invoke common-envelope evolution which is poorly understood, leading to large uncertainties in merger rates. We explore the alternative scenario of massive overcontact binary (MOB) evolution, which involves two very massive stars in a very tight binary which remain fully mixed due to their tidally induced high spin. We use the public stellar-evolution code MESA to systematically study this channel by means of detailed simulations. We find that, at low metallicity, MOBs produce double-black-hole (BH+BH) systems that will merge within a Hubble time with mass ratios close to one, in two mass ranges, ~25...60msun and >~ 130msun, with pair instability supernovae (PISNe) being produced in-between. Our models are also able to reproduce counterparts of various stages in the MOB scenario in the local Universe, providing direct support for it. We map the initial parameter space that produces BH+BH mergers, determine the expected chirp mass distribution, merger times, Kerr parameters and predict event rates. We typically find that for Z~<Z_sun/10, there is one BH+BH merger for ~1000 core-collapse supernovae. The advanced LIGO (aLIGO) detection rate is more uncertain and depends on the metallicity evolution. Deriving upper and lower limits from a local and a global approximation for the metallicity distribution of massive stars, we estimate aLIGO detection rates (at design limit) of ~19-550 yr^(-1) for BH+BH mergers below the PISN gap and of ~2.1-370 yr^(-1) above the PISN gap. Even with conservative assumptions, we find that aLIGO should soon detect BH+BH mergers from the MOB scenario and that these could be the dominant source for aLIGO detections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.