Abstract
We consider a sequence of topological torus bifurcations (TTBs) in a nonlinear, quasiperiodic Mathieu equation. The sequence of TTBs and an ensuing transition to chaos are observed by computing the principal Lyapunov exponent over a range of the bifurcation parameter. We also consider the effect of the sequence on the power spectrum before and after the transition to chaos. We then describe the topology of the set of knotted tori that are present before the transition to chaos. Following the transition, solutions evolve on strange attractors that have the topology of fractal braids in Poincare sections. We examine the topology of fractal braids and the dynamics of solutions that evolve on them. We end with a brief discussion of the number of TTBs in the cascade that leads to chaos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.