Abstract

This paper presents a new rotor design with assembled permeable retaining sleeve (APRS) to improve performances of a high speed permanent magnet synchronous machine (PMSM). The APRS consists of equal number of permeable and nonmagnetic parts, which are alternately arranged and assembled together circumferentially via keyways. Electromagnetic and mechanical characteristics of the rotor applied to a high speed flywheel PMSM are analyzed using finite element method. Machine performances are compared to an original design with commonly used rotor structure. It shows that phase inductance of the high speed machine increases dramatically due to smaller effective air gap, which may benefit suppressing inverter current harmonics. Also, permanent magnet usage reduces by 9.4 % to obtain identical back electromotive force and torque constant. In addition, a smaller skin depth owing to high-permeability material and the circumferential segmentation of the retaining sleeve effectively reduce rotor eddy current. Associated loss decreases by 40.7 % under open-circuit condition. A prototype rotor is fabricated and preliminary experimental tests are performed to confirm the analysis results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.