Abstract

This paper presents a general non-linear computational formulation for rotation-free thin shells based on isogeometric finite elements. It is a displacement-based formulation that admits general material models. The formulation allows for a wide range of constitutive laws, including both shell models that are extracted from existing 3D continua using numerical integration and those that are directly formulated in 2D manifold form, like the Koiter, Canham and Helfrich models. Further, a unified approach to enforce the G1-continuity between patches, fix the angle between surface folds, enforce symmetry conditions and prescribe rotational Dirichlet boundary conditions, is presented using penalty and Lagrange multiplier methods. The formulation is fully described in the natural curvilinear coordinate system of the finite element description, which facilitates an efficient computational implementation. It contains existing isogeometric thin shell formulations as special cases. Several classical numerical benchmark examples are considered to demonstrate the robustness and accuracy of the proposed formulation. The presented constitutive models, in particular the simple mixed Koiter model that does not require any thickness integration, show excellent performance, even for large deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.