Abstract
A new bearing vibration feature extraction method based on multiscale permutation entropy (MPE) and improved support vector machine based binary tree (ISVM-BT) is put forward in this paper. Local mean decomposition (LMD), a new self-adaptive time–frequency analysis method, is utilized to decompose the roller bearing vibration signal into a set of product functions (PFs) and then MPE method is used to characterize the complexity of the principal PF component in different scales. After the feature extraction, a new pattern recognition approach called ISVM-BT is introduced to accomplish the fault identification automatically, which has the priority of high recognition accuracy compared with other classifiers. Besides, the Laplacian score (LS) is introduced to refine the fault feature by sorting the scale factors. Finally, the rolling bearing fault diagnosis method based on LMD, MPE, LS and ISVM-BT is proposed and the experimental results indicate the proposed method is effective in identifying the different categories of rolling bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.