Abstract

The Hindmarsh–Rose (HR) model is a three-dimensional oscillators susceptible to initial values, making it capable of amplifying even the slightest variations. On this basis, we proposed a rolling bearing fault identification method based on period-doubling bifurcation in the HR model and constructed a bearing fault experimental platform to validate our approach in this paper. Initially, we analyze the HR model’s bifurcation characteristics using the discrete mapping method to identify oscillators suitable for detecting bearing faults. We then select the multiplicative period bifurcation points of the HR model to differentiate between different types of bearing faults. Next, we decompose and reconstruct vibration signals using the Hilbert–Huang transform and calculate the amplitude characteristics of the fault frequency band as the input for the HR detection oscillator. Finally, bearing faults are identified based on the phase trajectory of period-doubling. Furthermore, a comparative analysis is conducted between the proposed methodology and the employment of the empirical wavelet transform. Our approach presents a new perspective for utilizing nonlinear oscillators in bearing fault diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.