Abstract
A common task in data analysis is to compute an approximate embedding of the data in a low dimensional subspace. This is used, for example, for dimensionality reduction. Robust Subspace Recovery computes the embedding by ignoring a fraction of the data considered as outliers. Its performance can be evaluated by how accurate the inliers (non-outliers) are represented. We propose a new algorithm that outperforms the current state of the art when the data is dominated by outliers. The main idea is to rank each point by evaluating the change in the global PCA error when that point is considered as an outlier. We show that this lookahead procedure can be implemented efficiently by centered rank-one modifications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.