Abstract

Reversible watermarking methods are used for copyright protection and are able to recover the host image without distortion. Robust reversible watermarking technique should resist against intentional and unintentional image processing attacks. Robust reversible watermarking techniques should have three features namely imperceptibility, reversibility and robustness. In this paper, it is proposed to develop a new robust reversible blind watermarking for color images based on histogram construction of the wavelet coefficients constructed from the cover image. In the proposed approach, the red component of a host color image is decomposed into wavelet coefficients. Motivated by the excellent spatio-frequency localization properties of wavelets, this technique is proposed in the wavelet domain. The pixels are adjusted before watermark embedding such that both overflow and underflow of pixels during embedding is avoided and image is recovered without distortion. Based on histogram construction and the local sensitivity of Human Visual System (HVS) in wavelet domain, the watermark is embedded. For watermark extraction without host image, k-means clustering algorithm is proposed. The experimental results show that the proposed technique has good performance in terms of reversibility and robustness with the high quality of the watermarked image. The PSNR value of the recovered image is around 48[Formula: see text]dB which proves that the quality of the recovered image is not degraded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call