Abstract
The safety of lunar landing sites directly impacts the success of lunar exploration missions. This study develops a data-driven predictive model based on machine learning, focusing on engineering safety to assess the suitability of lunar landing sites and provide insights into key factors and feature representations. Six critical engineering factors were selected as constraints for evaluation: slope, elevation, roughness, hillshade, optical maturity, and rock abundance. The XGBoost model was employed to simulate and predict the characteristics of landing areas and Bayesian optimization was used to fine-tune the model’s key hyperparameters, enhancing its predictive performance. The results demonstrate that this method effectively extracts relevant features from multi-source remote sensing data and quantifies the suitability of landing zones, achieving an accuracy of 96% in identifying landing sites (at a resolution of 0.1° × 0.1°), with AUC values exceeding 95%. Notably, slope was recognized as the most critical factor affecting safety. Compared to assessment processes based on Convolutional Neural Networks (CNNs) and Random Forest (RF) models, XGBoost showed superior performance in handling missing values and evaluating feature importance accuracy. The findings suggest that the BO-XGBoost model shows notable classification performance in evaluating the suitability of lunar landing sites, which may provide valuable support for future landing missions and contribute to optimizing lunar exploration efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.