Abstract

A nonlinear auto-disturbance rejection controller (ADRC) has been developed to ensure high dynamic performance of induction motors in this paper. By using the extended state observer (ESO), ADRC can accurately estimate the derivative signals and precise decoupling of induction motors is achieved. In addition, the proposed strategy realizes the disturbance compensation without accurate knowledge of induction motor parameters. The simulation and experimental results show that the proposed controller ensures good robustness and adaptability under modeling uncertainty and external disturbance. It is concluded that the proposed topology produces better dynamic performance, such as small overshoot and fast transient time, than the conventional proportional/integral/derivative (PID) controller in its overall operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.