Abstract

We develop a framework for choosing the optimal load resistance, feed velocity and residence time for a reverse electrodialysis stack based on minimizing the levelized cost of electricity. The optimal load resistance maximizes the gross stack power density and results from a trade-off between stack voltage and stack current. The primary trade-off governing the optimal feed velocity is between stack pumping power losses, which reduce the net power density and concentration polarization losses, which reduce the gross stack power density. Lastly, the primary trade-off governing the optimal residence time is between the capital costs of the stack and pretreatment system. Implementing our strategy, we show that a smaller load resistance, a smaller feed velocity and a larger residence time than are currently proposed in the literature reduces costs by over 40%. Despite these reductions, reverse electrodialysis remains more expensive than other renewable technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.