Abstract

We consider a function g(r,x,u) with x,u∈ℂ and r∈ℕ, which, over a symmetric domain, equals the sum of an infinite series as noted in the 16th Entry of Chapter 3 in Ramanujan’s second notebook. The function attracted new attention since it was established to be closely connected to the theory of labelled trees. However, to the best of our knowledge, a closed-form solution allowing, e.g., the rapid computation of g(r,x,u) in Mathematica without explicit use of recursions has been lacking until now. Our proposed formula transforms the part depending on the variable u into a more symmetric form, which then appears inside a finite triple sum consisting of binomials and Stirling numbers of the second kind.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.