Abstract

The danger of a total blackout in a wide area or, even worse, in a country is always present. The restoration methods after a blackout mainly focus on the strategy that the dispatchers in the control centers of the Transmission System Operator will follow than the abilities that the distribution’s microgrids have. This study suggests a restoration technique to improve distribution system resilience following a blackout, using distributed generation for the restoration of important loads. The goal of the restoration problem is to maximize the number of critical loads that are restored following the catastrophic incident. Under the restrictions of the DGs and the network, the DGs with good black start capability are restored first. Load weight and node importance degree are suggested during the recovery path selection procedure, while taking node topological importance and load importance into account. A mixed-integer linear program (MILP) is used to simulate the issue, and the modified IEEE 39-bus test system is used to verify the efficacy of the suggested restoration approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call