Abstract

The generalized Swift--Hohenberg equation with a quadratic-cubic nonlinearity is used to study the persistence and decay of localized patterns in the presence of time-periodic parametric forcing. A novel resonance phenomenon between the forcing period and the time required to nucleate one wavelength of the pattern outside the pinning region is identified. The resonance generates distinct regions in parameter space characterized by the net number of wavelengths gained or lost in one forcing cycle. These regions are well described by an asymptotic theory based on the wavelength nucleation/annihilation time near the boundaries of the pinning region. The resulting theory leads to predictions that are qualitatively correct and, in some cases, provide quantitative agreement with numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.