Abstract

Cyclopolymerization of N,N-diallylmethionine hydrochloride, derived from the biogenic amino acid methionine, (90 mol%) and cross-linker tetraallylpiperazinium dichloride (10 mol%) in presence of an azo-initiator afforded pH-responsive cross-linked polyzwitterion (CPZ). The structural morphology of the resin (i.e. CPZ) was examined by the BET and FESEM-EDX analyses. The methionine embedded resin demonstrated remarkable efficacies for the removal of Hg(II) ions at ppb levels. A 50 mg-dose of the resin immersed in aqueous medium (18 mL) could reduce the concentration of Hg(II) from 200 and 400 ppb to 1.8 and 4.4 ppb, respectively, within 15 min. The resin has also proven to be remarkably effective in the removal of several toxic and priority metal pollutants from industrial wastewater. The Hg(II) adsorption followed pseudo second-order process with Ea of 48.1 kJ mol−1. The initial rapid adsorption of metal ions and subsequent slower adsorption was attributed to film and intraparticle diffusion, respectively. The SEM-EDX analyses revealed the attachment of Hg(II) ions onto the resin. The favorability of the endothermic adsorption was ensured by the negative ΔGº values. The efficient adsorption/desorption process confirmed the recyclability of the resin. The current resin demonstrated superior metal removal capacities as compared to several other adsorbents in recent works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.