Abstract

In this paper, we define a new kind of curve called $N$-slant curve whose principal normal vector field makes a constant angle with the Reeb vector field $\xi$ in Sasakian $3$-manifolds. Then, we give some characterizations of $N$-slant curves in Sasakian $3$-manifolds and we obtain some properties of the curves in $\mathbb{R}^{3}(-3)$. Moreover, we investigate the conditions of $C$-parallel and $C$-proper mean curvature vector fields along $N$-slant curves in Sasakian $3$-manifolds. Finally, we study $N$-slant curves of type $AW(k)$ where k=1,2 or 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.