Abstract

A new representation for faults in combinational digital circuits is presented. Faults that are inherently indistinguishable are identified and combined into classes that form a geometric structure that effectively subdivides the original circuit into fan-out-free segments. This fan-out-free characteristic allows a simplified analysis of multiple fault conditions. For certain circuits, including all two-level single-output circuits, it is shown that the detection of all single faults implies the detection of all multiple faults. The behavior of any circuit under fault conditions is represented in terms of the classes of indistinguishable faults. This results in a description of the faulty circuit by means of Boolean equations that are readily manipulated for the purpose of fault simulation or test generation. A connection graph interpretation of this fault representation is discussed. Heuristic methods for the selection of efficient tests without extensive computation are derived from these connection graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.